

DIVERSITY OF EXTRA-FLORAL NECTARIES (EFN) BEARING PLANTS AND ITS ANT ASSEMBLAGE

R. Jayanthi, T. Nalini* and T. Selvamuthukumaran

Depart. of Entomology, Faculty of Agriculture, Annamalai University, Chidambaram-608002 (Tamil Nadu) India.

Abstract

A survey was conducted to know the diversity of Extra-Floral Nectaries bearing plants and its ant assemblage during September, 2014 to March, 2016. Totally 162 flowering plants were examined from the study area. Of which 62 plants were found to have EFN. Amongst the sixty two Extra-Floral Nectaries bearing plants eleven are new distributional records for world. Percentage of EFN-bearing plants in the study area is 38.27. Between the plant types highest percentage of EFN-bearing plants were present in trees (33.87%) and lowest in climbers (8.07%). Fifty three species of trees were studied of which 21 species from 16 genera representing 8 families having EFN. In shrubs ten genus and eight families were with EFN. Among herbs overall the highest number of EFN-bearing species were recorded for Fabaceae (6 species) followed by Euphorbiaceae (3 species) and Pedaliaceae (2 species). Nine species of climbers were examined of which five species from four genera representing three families have EFN. In creepers eight species were with EFN. The subfamilies Formicinae (six species) were predominantly found on EFN-bearing plants.

Key Words : Diversity, distributional record, Extra-Floral Nectaries bearing plants, ant assemblage.

Introduction

Plant defences a range of methods to minimize the effects of herbivorous organisms, and those defences are direct and indirect. Direct defences are those which act directly on the herbivore, such as feeding deterrents and toxins. Indirect defences involve a third trophic level, and are based on the production by the plant of specific structure or chemical compounds that attract natural enemies of the herbivore, such as carnivore organisms and parasitoids (Karban and Baldwin, 1997; Schoonhoven et al., 2005). The best example of indirect defences is the production of nectar by nectaries located outside the floral structure (extrafloral nectaries, EFNs), (Bentley, 1977; Stephenson, 1982; Schoonhoven et al., 2005; Heil, 2008, 2011). The commonest resource plants offer to ants is EFN, a liquid substance rich in carbohydrates with dilute concentrates of amino acids, lipids, phenols, alkaloids and volatile organic compounds (Gonzalez-Teuber and Heil, 2009). Carbohydrates are key resources for arboreal ants (Davidson et al., 2003).

*Author for correspondence : E-mail : nalini_jk@yahoo.com

Angiosperm phylogeny group (2009) reported that EFNs in a total of 3941 species distributed across 745 genera and 108 families, four of which were fern families, but none in bryophytes, gymnosperms, early angiosperms or magnoliids. Fascinatingly, almost half of all EFN bearing species belong to only three angiosperm families. The legume family (Fabaceae) stands out, with 30% of the EFN-bearing species; it has long been known for the richness of its interactions with ants (McKey, 1989). The second- and third-ranked families are Passifloraceae and Malvaceae, respectively, together comprising 20 % of the remaining EFN species. Little is known about the distribution and abundance of plants with EFNs (Keeler, 1980). With this background the present study was initiated to survey for EFN-bearing plants and the ant assemblage visiting them.

Materials and Methods

Survey for EFN-bearing plants and ant assemblage

Survey was conducted at Annamalainagar and Sivapuri from September, 2014 to March, 2016. Random survey was made at weekly intervals along 50 arbitrarily selected sites in the study area. At each site, all types of plants (trees, shrubs, herbs, climbers and creepers) were examined for the presence of EFN. From EFN-bearing plants, branches were collected with flowers or inflorescence, fruits and put inside individual polythene covers and secured with rubber bands. Details of location of collection, plant name and date were written on the cover and taken to the laboratory.

Ants present on EFN-bearing plants were collected by hand collection. Collected ant samples were stored in 75 per cent ethyl alcohol. Sorted specimens were placed in glass vials with proper labels having the location of collection, plant name and date. When more than ten individuals were present, seven were removed and point mounted on triangle "points" between procoxa and metacoxa, pinned by entomological pin (size "3") and labelled. All excess ants were stored in 90 per cent ethyl alcohol. Before the ants dried, their legs were pushed ventrally and away from the body, and mandibles of some specimens opened, to facilitate identification (Musthak Ali, 1981).

Identification of plants

EFN-bearing plants were observed through Stemi DV4 Stereo (Zeiss) microscope for the confirmation of EFN structures. Identification of plants were done up to species level at IEBL (Insect Ecology and Behavioural Lab), Department of Entomology, Faculty of Agriculture, Annamalai University and confirmation was made with specialists in the Department of Botany, Faculty of Science and Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University. Distribution pattern of EFN-bearing species in trees, shrubs, herbs, climbers and creepers were noted and percentage of plant species with EFN in different plant types were calculated.

Identification of ant assemblage

Identification of preserved ant assemblage to species level were done at IEBL (Insect Ecology and Behavioural Lab), Department of Entomology, Faculty of Agriculture, Annamalai University following the taxonomic keys of

Bolton (1994); Tiwari (1999) and Hashimoto (2003) using Stemi DV4 Stereo (Zeiss) microscope.

Results and Discussion

Identification of plants

From the survey during September, 2014 to March, 2016, totally 162 plants were examined from the study area. Of which 62 plants were found to have EFN visited by ants (Table 2-6).

Amongst the sixty two plant species eleven are new distributional records for world viz., Vinca rosea, Anthurim plowmanii, Opuntia littoralis, Coccinia grandis, Dolichos lablab var. typicus, Abrus precatorius, Tamarindus indica, Ocimum gratissimum, Malpighia emarginata, Ficus hispida and Sesamum allatum.

Distribution pattern of EFN-bearing plant species

Percentage of EFN-bearing plants in the study area is 38.27. Between the plant types highest percentage of EFN-bearing plants were present in trees (33.87%) and lowest in climbers (8.07%). For the first time in India the distribution pattern of EFN species were recorded for 62 plants. Sixty two plants were distributed among 43 genera and 19 families table 1.

EFNs occur in a variety of plant types including trees, shrubs, herbs, climbers and creepers. Distribution pattern of EFN species in trees are presented in table 2. Fifty three species of trees were studied of which 21 species from 16 genera representing 8 families having EFN Table 1. EFNs have not been reported in the 16 families. The families with more EFNs were Fabaceae (*Samanea saman*, *Acacia auriculiformis*, *Acacia baileyana*, *Delonix regia*, *Prosopis juliflora*, *Leucaena leucocephala*, *Albizia lebbeck*, *Albizia amara*, *Samanea* sp. 1, *Samanea* sp. 2, *Tamarindus indica*. Malvaceae and Bignoniaceae have three and two species respectively table 2. Also families like Combretaceae, Lamiaceae, Moringaceae, Moraceae and Malpighiaceae were reported with one species of EFN each.

In shrubs observation was done in 38 species distributed among 35 genera and 18 families in which 10 genus and 8 families were with EFN (Table 3). EFNbearing plants are present mostly in Malvaceae and Fabaceae each with three and two species respectively. Rest of the families with EFNs were Araceae (*Anthurium plowmanii*), Convolvulaceae (*Ipomoea carnea*), Cactaceae (*Opuntia littoralis*), Euphorbiaceae (*Ricinus communis*), Lamiaceae (*Clerodentrum bungei*), Rubiaceae (*Morinda citrifolia*) each with one species.

 Table 1: Distribution of plant species with and without EFNs in different plant types.

Plant Family		Genu	S	Species			
type	Without EFN	With EFN	Without EFN	With EFN	Without EFN	With EFN	Species with EFN (%)
Trees	16	8	29	16	32	21	33.87
Shrubs	10	8	25	10	27	11	17.74
Herbs	16	9	31	11	34	17	27.42
Climbers	3	3	4	4	4	5	8.07
Creepers	1	2	3	6	3	8	12.90

S. No.	Plant family	Plant species	Presence of EFN
1.	Apocynaceae	Alstonia scholaris (L.) R.Br.	-
2.	Annonaceae	Polyalthia longifolia (Sonn.) Thwaites	-
3.	Annonaceae	Annona reticulata L.	-
4.	Arecaceae	Dypsis lutescens H(Wendl.)Beentje & Dransf	-
5.	Arecaceae	Cocos nucifera L.	-
6.	Anacardiaceae	Anacardium occidentale L.	-
7.	Anacardiaceae	Mangifera indica L.	-
8.	Bignoniaceae	Crescentia cujete L.	_
9.	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth	+
10.	Bignoniaceae	Kigelia africana (Lam.) Benth.	+
11.	Combretaceae	Terminalia catappa L.	+
12.	Causuarinacea	Causuarina equisetifolia L.	-
13.	Caricaceae	Carica papaya L.	
13.	Fabaceae	Samanea saman (Jacq.) Merr.	+
14.	Fabaceae	Acacia auriculiformis A.Cunn. ex Benth.	+
15.	Fabaceae	Acacia baileyana F. Muell.	+
17.	Fabaceae	Peltophorum pterocarpum (DC.) K.Heyne	1
17.	Fabaceae	Delonix regia (Hook.) Raf.	+
<u>10.</u> 19.	Fabaceae	Prosopis juliflora (Sw.) DC.	+
20.	Fabaceae	Leucaena leucocephala (Lam.) de Wit	+
20.	Fabaceae		+
$\frac{21}{22}$	Fabaceae	<i>Albizia lebbeck</i> (L.) Benth. <i>Albizia amara</i> (Roxb.) Boivin.	+
23. 24.	Fabaceae Fabaceae	Samanea sp. 1	+ +
	Fabaceae	Samanea sp. 2	
25.		Cassia fistula L. Tamarindus indica L.	- +
26.	Fabaceae		
27.	Fabaceae	Pungamia pinnata L.	-
28.	Lamiaceae	Gmelina asiatica L.	+
29.	Lamiaceae	Vitex negundo L.	-
30.	Lamiaceae	Tectona grandis L.f	-
31.	Lecythidaceae	Couroupita guianensis Aubl.	-
32.	Malvaceae	<i>Ceiba pentandra</i> (L.) Gaertn.	+
33.	Malvaceae	<i>Thespesia populnia</i> (L.) Sol. ex Correa	-
34.	Malvaceae	Thespesia sp. 1	+
35.	Malvaceae	Thespesia sp. 2	+
36.	Malpighiaceae	Malpighia emarginata DC.	+
37.	Myrtaceae	Callistemon citrinus (Curtis) Skeels	-
38.	Myrtaceae	Syzygium cumini L.Skeels	-
39.	Myrtaceae	Psidium guajava L.	-
40.	Myrtaceae	Eucalyptus teriticornis Sm.	-
41.	Moraceae	Ficus religiosa L.	-
42.	Moraceae	Ficus hispida L.f.	+
43.	Moraceae	Artocarpus heterophyllus Lam	
44.	Musaceae	Musa paradisiaca L	
45.	Moringaceae	Moringa oleifera Lam.	+
46.	Meliaceae	Azadirachta indica A.Juss.	
47.	Poaceae	Bambusa bambos (L.) Vass	-
48.	Rhamnaceae	Zyziphus mauritiana Lam.	
49.	Rutaceae	Citrus limon (L.) Osbeck.	-

 Table 2: Distribution pattern of EFN-bearing species in trees.

Table 2 conti

Table 2 conti

50.	Rutaceae	Citrus medica L.	
51.	Phyllanthaceae	Phyllanthus emblica L.	-
52.	Rubiaceae	Morinda tinctoria (Roxb)	-
53. Sapotaceae Manilkara zapota (L.) P. Royen -		-	

+ : presence of the species, - : absence of the species

Table 3: Distribution pattern of EFN-bearing species in shrubs.

S.No.	Plant family	Plant species	Presence of EFN
1.	Apocyanaceae	Calotropis gigantea L. Dryand	-
2.	Apocynaceae	Tabernaemontana divaricata (L.) R. Br. ex Roam & Schult.	-
3.	Apocynaceae	Nerium indicum Mill.	-
4.	Apocynaceae	Adnium obesum (Forssk.) Roem. & Schult	-
5.	Apocynaceae	Plumeria alba L.	-
6.	Amaranthaceae	Gomphrena globosa L.	-
7.	Araceae	Colacasia esculenta (L.) Schott.	-
8.	Araceae	Anthurium plowmanii Croat Candollea	+
9.	Asteraceae	Helianthus annuus L.	-
10.	Brassicaceae	Brassica juncea (L.) Czern	-
11.	Convolvulaceae	Ipomoea carnea Jace.	+
12.	Cactaceae	Opuntia littoralis (Engelm.) Cockerell	+
13.	Euphorbiaceae	Jatropha curcas L.	-
14.	Euphorbiaceae	Manihot esculenta L.	-
15.	Euphorbiaceae	Ricinus communis L.	+
16.	Fabaceae	Desmanthus virgatus (L.) Willd.	+
17.	Fabaceae	Cassia occidentalis L.	+
18.	Fabaceae	Sesbania bispinosa (Jacq.) W. Wight.	-
19.	Lythraceae	Punica granatum L.	-
20.	Lamiaceae	Clerodentrum bungei Stued.	+
21.	Malvaceae	Hibiscus rosa-sinensis L.	+
22.	Malvaceae	Abutilon indicum (L.) Sweet	-
23.	Malvaceae	Abelmoschus esculentus L. (Moench)	-
24.	Malvaceae	Hibiscus cannabinus L.	+
25.	Malvaceae	Gossypium hirsutum L.	+
26.	Malvaceae	Corchorus aestuans L.	-
27.	Poaceae	Saccharum officinarum L.	-
28.	Poaceae	Zea mays L.	-
29.	Rubiaceae	Ixora coccinia L.	-
30.	Rubiaceae	Morinda citrifolia L.	+
31.	Rosaceae	Rosa berberifolia Pall.	-
32.	Rutaceae	Murraya koenigii L. Spreng.	-
33.	Solanaceae	Solanum trilobatum L	
34.	Solanaceae	Solanum melongena L	
35.	Solanaceae	Solanum torvum Sw	
36.	Solanaceae	Lycopersican esculentum Mill.	-
37.	Solanaceae	Datura metel L.	-
38	Verbenaceae	Lantana camara L.	-

+ : presence of the species, - : absence of the species

Table 4: Distribution pattern of EFN-bearing species in herbs.

S.No.	Plant family	Plant species	Presence of EFN
1.	Asteraceae	Cosmos bipinnatus Cav.	-
2.	Asteraceae	Calendula officinalis L.	-
3.	Asteraceae	Eclipta alpa (L.) Hassk	-
4.	Asteraceae	Dendranthema grandiflorum (L.) Ness	-
5.	Asteraceae	Tridax procumbens (L.) L	-
6.	Acanthaceae	Crossandra infundibuliformis (L.) Nees	-
7.	Aizoaceae	Trianthema portulacastrum L.	-
8.	Apocynaceae	Vinca rosea L.	-
9.	Amaranthaceae	Alternanthera pungens Kunth.	-
10.	Amaranthaceae	Aerva lanata (L.) Juss.	-
11.	Amaranthaceae	Celosia spicata L.	-
12.	Asparagaceae	Agave americana L.	-
13.	Asparagaceae	Polianthes tuberosa L.	-
14.	Brassicaceae	Brassica oleracea L.	_
15.	Brassicaceae	Brassica caulorapa L.	-
16.	Balsaminaceae	Impatiens balsamina L.	+
17.	Cyperaceae	Cyperus difformis L.	-
18.	Cleomaceae	Cleome viscosa L.	-
19.	Euphorbiaceae	Chrozophora rottleri (Geiseler) A. Juss. ex Spreng.	+
20.	Euphorbiaceae	Euphorbia heterophylla L.	+
21.	Euphorbiaceae	Acalypha indica L.	-
22.	Euphorbiaceae	Croton bonplandianus Baill.	+
23.	Euphorbiaceae	Euphorbia hirta L.	-
24.	Fabaceae	<i>Cyamopsis tetragonoloba s</i> (L.) Taub.	-
25.	Fabaceae	Vigna radiata (L.) R.Wilczek	+
26.	Fabaceae	Vigna unguiculata (L.) Walp.	+
27.	Fabaceae	Vigna mungo (L.) Hepper	+
28.	Fabaceae	Cassia hirsuta L.	+
29.	Fabaceae	Vigna sp.	+
30.	Fabaceae	Arachis hypogaea (L.)	
31.	Fabaceae	Vigna trilobata (L.) Verdc	+
32.	Lamiaceae	Ocimum gratissimum L.	+
33.	Liliaceae	Lilium longiflorum Thunb.	+
34.	Marsileaceae	Marsiliea quadrifolia L.	-
35.	Nyctaginaceae	Mirabilis jalapa L.	_
36.	Phyllanthaceae	Phyllanthus maderaspatensis L.	_
37.	Phyllanthaceae	Phyllanthus niruri L.	_
38.	Poaceae	Cynodon dactylon (L.) Pers.	-
39.	Poaceae	<i>Echinochloa crus-galli</i> (L.) P.Beauv	-
40.	Poaceae	Oryza sativa L.	_
41.	Portulacaceae	Portulaca oleracea L.	_
42.	Pedaliaceae	Sesamum allatum Thonn.	+
43.	Pedaliaceae	Sesamum indicum L.	+
44.	Passifloraceae	Turnera ulmifolia L.	+
45.	Solanaceae	Physalis peruviana L.	

Table 4 conti

46.	Solanaceae	Solanum nigrum (L.) -	
47.	Solanaceae	Solanum xanthocarpumL.	-
48.	Solanaceae	Capsicum annum L.	-
49.	Oxalidaceae	Biophytum sensitivum (L.) DC	-
50.	Zygophyllaceae	Tribulus terrestris L.	
51.		Unidentified sp.	+

Table 4 conti

+ : presence of the species - : absence of the species

Table 5: Distribution pattern of EFN-bearing species in climbers.

S. No.	Plant family	Plant species	Presence of EFN
1.	Colchicacaeae	Gloriosa superba L.	+
2.	Euphorbiaceae	Croton sp.	+
3.	Fabaceae	Abrus precatorius L.	+
4.	Fabaceae	Dolichos lablab L.	+
5.	Fabaceae	Dolichos lablab var. typicus L.	+
6.	Fabaceae	Clitoria ternatea L.	-
7.	Nyctaginaceae	Bougainvellea spectabilis Wild.	-
8.	Oleaceae	Jasminum sambac (L.) Aiton	-
9.	Convolvulaceae	Ipomoea batatas (L.) Lam.	+

+ : presence of the species

-: absence of the species

Among herbs overall the highest number of EFNbearing species were recorded for Fabaceae from the genus Vigna (5 species) and Cassia (1 species) followed by Euphorbiaceae (3 species) and Pedaliaceae (2 species) (Table 4). Other families bearing EFN were Apocynaceae (Vinca rosea), Balsaminaceae (Impatiens balsamina), Lamiaceae (Ocimum gratissimum), Liliaceae (Lilium longiflorum) and Passifloraceae (Turnera ulmifolia L.). Also one unidentified plant species is present with EFN.

Distribution pattern of EFN-bearing species in climbers are presented in table 5. Nine species of climbers were examined of which five species from four genera representing three families have EFN. Families viz., Fabaceae (*Abrus precatorius*, *Dolichos lablab*, *Dolichus lablab* var. *typicus*), Euphorbiaceae (*Croton* sp.) and Convolvulaceae (*Ipomoea batatas*) have EFN but Colchicaceaee, Nyctaginaceae and Oleaceae did not possess EFN.

In the present study, it was found that in creepers eight species are with EFN. The highest number of EFNbearing genus was recorded from the family Cucurbitaceae (*Momordica*, *Coccinia*, *Cucurbita*, *Luffa*, *Lagenaria*) followed by Convolvulaceae (*Ipomoea*). But the common ornamental plant, *Sciendapus aureus* (Araceae) lack EFN (Table 6).

S. No.	Plant family	Plant species	Presence of EFN
1.	Araceae	Sciendapus aureus (Linden and Andre) S.Buntin	-
2.	Convolvulaceae	Ipomoea cairica Sweet.	+
3.	Convolvulaceae	Ipomoea aquatica Forssk.	+
4.	Convolvalaceae	Convolvulus arvensis L.	-
5.	Cucurbitaceae	Momordica charantia L.	+
6.	Cucurbitaceae	Coccinia grandis (L.) Voigt	+
7.	Cucurbitaceae	Cucurbita pepo L.	+
8.	Cucurbitaceae	Luffa aegyptiaca Mill.	+
9.	Cucurbitaceae	Luffa acutangula (L.) Roxb.	+
10.	Cucurbitaceae	Citrullus lanatus (Thunb) Matsum.& Nakai	-
11.	Cucurbitaceae	Lagenaria siceraria (Molina) Standl.	+

 Table 6: Distribution pattern of EFN-bearing species in creepers.

+ : Presence of the species, - : Absence of the species

Ant subfamily	Ant species		
Formicinae	Camponotus compressus		
	Camponotus irritans		
	Camponotus rufoglaucus		
	Camponotus sericeus		
	Oecophylla smaragdina		
	Polyrachis rastellata		
Myrrmicinae	Myrmicaria brunnea		
	Solenopsis geminata		
	Pheidole sp.		
	Monomorium scabriceps		
	Meranoplus bicolor		
	Crematogaster sp.		
Pseudomyrmecinae	Tetraponera rufonigra		
	Tetraponera nigra		

 Table 7: Ant assemblage on EFN-bearing plants.

From the survey it could be understood clearly that agriculturally important families like Fabaceae, Malvaceae, Euphorbiaceae, Cucurbitaceae and Convolvulaceae possessed more number of EFN species than others.

Weber *et al.*, (2015) documented EFN families share at world level and reported that Fabaceae having the highest species number 853 followed by Passifloraceae (444 species), Euphorbiaceae (360 species), Malvaceae (299 species) and Bignoniaceae (264 species). Heil (2015) also pointed out that, EFN is also secreted by cotton, other crops and orchard plants, particularly in Cucurbitaceae (pumpkin, zucchini), Euphorbiaceae (cassava), Fabaceae (bean, pea), and Rosaceae (almond, peach, cherry). These reports are in accordance with the present findings.

May Ling (2004) reported that extrafloral nectaries are especially common in the family Euphorbiaceae, which consists of at least 30 genera, among which 27 species belonging to 13 genera possess these structures. A few genera in the families Caesalpiniaceae, Mimosaceae, Convolvulaceae, Papilionaceae, Passifloraceae and Balsamaceae also have these nectaries. Most of these species are trees or shrubs. Herbaceous plants with EFNs are not common which is in line with present observations.

Identification of ant assemblage

From sixty two EFN-bearing plants 14 species of ants were found which are falling under three subfamilies (Formicinae, Myrmicinae and Pseudomyrmecinae) are listed in Table 7. The subfamilies Formicinae (six species) and Myrmicinae (six species) were predominantly represented at EFNs. The Formicine genus *Camponotus* presented a higher number of species visiting EFNs than the remaining genera recorded on each of the plants censused (Oliveira and Brandão 1991; Oliveira *et al.*, 1995). Also Apple and Feener (2001) observed on patterns in ant associations with extrafloral nectaries of *Passiflora*. Ants associated were *Ectatomma ruidum*, *E. tuberculatum* (Ponerinae), *Crematogaster*, *Pheidole*, *Solenopsis*, *Wasmannia auropunctata* (Myrmicinae), *Pseudomyrmex* (Pseudomyrmicinae), *Brachymyrmex*, *Camponotus*, *Paratrechina* (Formicinae), and *Tapinoma* (Dolichoderinae) which is in accordance with the present study results.

Although formicine ants are clearly the predominant group, ants in the subfamilies Myrmicinae (Cephalotes), Ponerinae (*Ectatomma*), and Dolichoderinae (*Azteca*) also commonly feed on plant and insect exudates on Cerrado foliage. Detailed faunal accounts are mentioned by Oliveira and Brandao, 1991; Dansa and Rocha, 1992; Oliveira et al., 1995; Oliveira and Pie, 1998; Del-Claro and Oliveira, 1999; Santos and Del-Claro, 2001. Mohankumar and Nalini (2016) reported that a total of 27 species under 19 genera and six subfamilies of ants were collected from 35 locations in seven Taluks. Subfamilies Formicinae and Myrmicinae were recorded with more number of genera and species. Chidambaram Taluk, Sivapuri and Annamalainagar were recorded with ten genera and fourteen species respectively which is in accordance to the present study results.

References

- Angiosperm Phylogeny Group (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIII. *Botanical Journal* of the Linnean Society, **161:** 105–121.
- Apple, J.L. and J.R. Fenner (2001). Ant visitation of extrafloral nectaries of *Passiflora*: the effects of arboreal ants. *Biological Journal of Linnean Society*, **61**: 153–181.
- Bentley, B.L. (1977). Extra-floral nectaries and protection by pugna-cious bodyguards. *Annual Review of Ecology and Systamatics*, **8**: 407–427.
- Bolton, B. (1994). A New General Catalogue of the Ants of the World. Harvard University Press, pp. 222.
- Dansa, C.V.A. and C.F.D. Rocha (1992). An ant- membracidplant interaction in a Cerrado area of Brazil. *Journal of Tropical Ecology*, 8: 339–348.
- Davidson, D.W., S.C. Cook, R.R. Snelling and T.H. Chua (2003). Explaining the abundance of ants in lowland tropical rainforest canopies, Science, 300: 969-72.
- Del-claro, K. and P.S. Oliveria (1999). Ant homoptera interaction in neotropical savanna; the honeydew producing treehopper *Guayaqualla xiphias* (Membracidae) and its associated ant fauna on *Didymopanax vinosum* (Araliaceae). *Biotropica*, **35**: 135-144.

- Gonzalez-Teuber, M. and M. Heil (2009). The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. *Journal of Chemical Ecology*, 35: 459–68.
- Hashimoto, Y. (2003). Identiûcation guide to the ant genera of Borneo. In: Hashimoto, Y., Rahman, H, (Eds.), Inventory and Collection. Total protocol for understanding of biodiversity. Research and Education Component, BBEC Programme (Universiti Malaysia Sabah), Universiti Malaysia Sabah, Kota Kinabalu. pp. 89-162.
- Heil, M. (2008). Indirect defence via tritrophic interactions. *New Phytologist*, **178**: 41–61.
- Heil, M. (2011). Nectar: generation, regulation and ecological func-tions. *Trends in Plant Science*, 16(4): 191-200.
- Heil, M. (2015). Plant- insect interface: A spotlight on chemical Ecology, phenotype Plasticity, and Food webs. *Annual Review of Entomology*, **60**: 213-32.
- Karban, R. and I. Baldwin (1997). Induced responses to herbivory. Chicago University Press, Chicago. pp. 90.
- Keeler, K.H. (1980). Distribution of extrafloral nectaries in temperate communities. *American Midland Naturalist*, 104: 274-280.
- May Ling (2004). The occurrence of extrafloral nectaries in Hong Kong plants. *Botonical Bullutin Academic sinia*, 45: 237-245.
- McKey, D. (1989). Interactions between ants and leguminous plants. In: Stirton, C.H., Zarucchi, J.L. (Eds.), Advances in legume biology. Monographs in Systematic Botany. nectar thieves. *Journal of Chemical Ecology*, 8(7): 1025–34.
- Mohankumar, J. and T. Nalini (2016). Studies on diversity of ant fauna (Hymenoptera: Formicidae) in Cuddalore district of Tamil Nadu. *Annamalai University Science Journal*, 50(2): 115-122.

- Mushtak ali, T.M. (1981). Ant fauna (Humenoptera: Formicidae) of Bangalore with observations on their nesting and foraging habits. M.Sc. Thesis. University of agricultural sciences, Bangalore. pp. 195.
- Oliveira, P.S. and C.R.F. Brandão (1991). The ant community associated with extrafloral nectaries in Brazilian cerrados, p. 198-212. In D. F. Cutler & C. R. Huxley (eds.), Ant-Plant Interactions. Oxford, Oxford University Press, 601 p.
- Oliveira, P.S., C. Klitzke and E. Vieira (1995). The ant fauna associated with the extrafloral nectaries of *Ouratea hexasperma* (Ochnaceae) in an area of cerrado vegetation in Central Brazil. Entomol. *Month. Mag.*, **131**: 77-82.
- Oliveira, P.S. and M.R. Pie (1998). Interaction Between Ants and Plants Bearing Extrafloral Nectaries in Cerrado Vegetation. *Anais do Sociedade Entomologica do Brasil*, 27(2): 161-176.
- Santos, J.C. and K. Del-Claro (2001). Interactions between ants, herbivores and extrafloral nectaries in *Tocoyena formosa* (Rubiaceae) in cerrado vegetation. *Revista Brasileira de Zoociencias.*, 3: 77-92.
- Schoonhoven, L.M., J.J.A. Van Loon and M. Dicke (2005). Insect- plant biol-ogy, 2nd edn. Oxford University Press, New York.
- Stephenson, A.G. (1982). Iridoid glycosides in the nectar of *Catalpa speciosa* are unpalatable to nectar thieves. *Journal of Chemical Ecology*, 8(7): 1025–34.
- Tiwari, R.N. (1999). Taxanomic studies on ants of southern India (Insecta: Hymenoptera: Formicidae). *Zoological survey of India*, **4**: 99.
- Weber, M.G., L.D. Porturas and K.H. Keeler (2015). World list of plants with extrafloral nectaries. Available from: www.extrafloralnectaries.org. [21 October 2015].